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Abstract 
A method for deformable shape detection and recognition 
is described. Deformable shape templates are used to par- 
tition the image into a globally consistent interpretation, 
determined in part by the minimum description length prin- 
ciple. Statistical shape models enforce the prior probabil- 
ities on global, parametric deformations for each object 
class. Once trained, the system autonomously segments 
deformed shapes from the background, while not merging 
them with adjacent objects or shadows. The formulation 
can be used to group image regions based on any image ho- 
mogeneity predicate; e.g., texture, color, or motion. The re- 
covered shape models can be used directly in object recog- 
nition. Experiments with color imagery are reported. 

1   Introduction 
Segmentation using traditional low-level image processing 
techniques, such as region growing, edge detection, and 
mathematical morphology operations, requires a consider- 
able amount of interactive guidance in order to get satis- 
factory results. Automating these model-free approaches 
is difficult because of noise, shape complexity, illumina- 
tion, inter-reflection, shadows, and variability within and 
across individual objects. 

One can exploit prior knowledge to sufficiently con- 
strain the segmentation problem. When available, such 
information can be used to eliminate ambiguities and re- 
duce computational complexity in finding optimal group- 
ings of image regions. For instance, model-based segmen- 
tation can be used in concert with image preprocessing to 
guide and constrain region grouping [13, 28, 35]. 

The use of models in segmentation is not a panacea, 
however. Due to shape deformation and variation within 
object classes, a simple rigid model-based approach will 
break down in general. This led to the use of deformable 
shape models in image segmentation [7,18,20,22,31,38]. 

Another strategy is to utilize image features that are 
somewhat invariant to illumination [6, 16], or to directly 
model the physics of illumination, color, shadows, and sur- 
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face inter-reflections [14, 23]. Such approaches have been 
shown to improve segmentation accuracy, and could be 
combined with model based methods. 

The above mentioned techniques make mistakes in 
merging regions, even in constrained contexts, because lo- 
cal constraints are in general insufficient. For more reliable 
segmentation, global consistency must be enforced. This 
idea is embodied in the principle of global coherence [33]: 
the best partitioning is the one that globally and consis- 
tently explains the greatest portion of the sensed data. Ide- 
ally, this should be coupled with the minimum discription 
length (MDL) principle: the simplest region segmentation 
explaining the observations is the best [11,21, 24, 39]. 

Finding the globally consistent, MDL image labeling is 
impractical in general due to the computational complexity 
of global optimization algorithms. This has led to the use 
of parallel algorithms [11,24] or approximation algorithms 
[5, 8,15, 21,29, 32, 37, 39]. 

2   Overview of Approach 
The above mentioned work leads to the development of our 
approach. Deformable shape templates are used to parti- 
tion the image into a globally consistent interpretation, de- 
termined in part by the MDL principle. The formulation 
can be used to group image regions based on any image 
homogeneity predicate; e.g., texture, color, or motion. 

Each shape template is specified in terms of global warp- 
ing functions applied to a closed polygon. In the imple- 
mentation, the prior distribution on global deformations 
for each shape is assumed Gaussian, and estimated using 
region segmentations provided in a training set. In our ex- 
periments, approximately 40 training images are needed 
to train a model. Once trained, the system autonomously 
segments deformed shapes from the background, while not 
merging them with adjacent objects or shadows. 

We will now give a brief overview of the segmentation 
process as it is applied to find four bananas in the example 
image of Fig. 1(a). First, the input color image is over- 
segmented via standard region-merging algorithms [2, 9], 
as shown in Fig. 1(b). Using this over-segmentation, can- 
didate regions for interesting objects are determined based 
on their color features [6]. 

Next an edge map is computed for the input image, as 
shown in Fig. 1(c). The edge map is used to constrain con- 
sideration of possible grouping hypotheses later in region 
merging. Notable edges and their strengths can be detected 
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Figure 1: Example input and precomputation: (a) input image, 
(b) over segmentation, (c) edge map, (d) deformable template. 

Figure 2:   Result:   (a) selected region groupings, (b) model- 
guided region merging, (c) recovered parametric shape models. 

via standard image processing methods. 
The system then tests various combinations of candi- 

date region groupings. For each grouping hypothesis, we 
recover the model alignment and deformations needed to 
match the grouping. Fig. 1(d) shows the template used for 
grouping regions in this example. Goodness of fit is deter- 
mined by a cost measure that includes: 1.) a region color 
compatibility term, 2.) a region/model area overlap term, 
and 3.) a deformation term. The third term enforces a pri- 
ori constraints on the allowable deformations for a partic- 
ular deformable shape class {e.g., bananas). The template 
"prefers" to deform in ways that are consistent with the 
prior distribution on the deformation parameters. 

In theory, the system should exhaustively test all possi- 
ble combinations of regions groupings, and select the best 
ones for merging. In practice, region adjacency and edge 
map constraints are used to prune search. Despite this, the 
worst case computational complexity remains exponential. 
To make the problem tractable, we employ algorithms that 
find the approximately optimal solution: best-first, simu- 
lated annealing, or highest confidence first. 

The approximately optimal region groupings obtained 
via the best-first algorithm are shown in Fig. 2(a). These 
groupings can then be merged in the color image segmen- 
tation, as shown in Fig. 2(b).  Note that region merging 

and object identification are executed simultaneously. The 
system simultaneously recovers a deformable template de- 
scription for each region grouping as shown in Fig. 2(c). 
Recovered template parameters can be used in estimating 
the likelihood that a shape belongs to a particular class. 

3   Related Work 
Previous approaches are based on the active contours 
paradigm [22]. The snake formulation can be extended 
to include a term that enforces homogeneous properties 
over the region during region growing [7, 18, 20, 31, 38]. 
This hybrid approach offers the advantages of both region- 
based and deformable modeling techniques, and tends to 
be more robust with respect to model initialization and 
noisy data. However, it requires hand-placement of the ini- 
tial model, or a user-specified seed point on the interior of 
the region. One proposed solution is to scatter many region 
seeds at random over the image, followed with segmenta- 
tion guided via Bayes/MDL criteria [11, 39]. 

Other approaches use special-purpose deformable tem- 
plates [19, 26, 38]; e.g., to model facial features, such as 
eyes [38]. The template-based approach allows for inclu- 
sion of object-specific knowledge in the model. This fur- 
ther constrains segmentation, resulting in enhanced robust- 
ness to occlusion and noise. Under certain conditions, de- 
formable templates can be derived semi-automatically, via 
statistical analysis of shape training data [10, 27]. The es- 
timated probability density function (PDF) for the shape 
deformation parameters can be used in ML-estimation of 
segmentation and in Bayesian recognition methods. 

From another view, image segmentation is a labeling 
problem; the ideal segmentation should be globally consis- 
tent or nearest to the one with maximum likelihood. This 
has led to various relaxation labeling or stochastic labeling 
methods that are related to general optimization algorithms 
[3,17,12]. Nearly all require some prior information, such 
as the number of labels needed or the probability distribu- 
tion of labels in the image. Such information is not always 
available for general imagery. 

After defining the criterion function for labeling, the 
next problem is computing the solution to the optimiza- 
tion problem. A number of proposed approaches employ 
simulated or deterministic annealing [5,32,15,29,37] (for 
a comparison see [25]). Chou and Brown [8] used highest 
confidence first (HCF) to infer a unique labeling from the 
posteriori distribution that is consistent with both the prior 
knowledge and evidence. Their method is analgous to de- 
terministic annealing, but computation is more efficient. 

A number of authors have proposed a formulation of the 
image partitioning problem that is based on the minimum 
description length (MDL) principle [11, 21, 24, 39]. MDL 
is based on information-theoretic arguments: the simplest 
model explaining the observations is the best. It also re- 
sults in an objective function with no arbitrary thresholds. 



As will be seen, the global cost function employed in our 
system is compatible with the MDL principle. 

4   Deformable Model Formulation 
In our system, a deformable model is used to guide group- 
ing of image regions. Shape is specified in terms of global 
warping functions applied to a closed polygon, also known 
as a template. The global warping can be generic, and 
is determined by a vector of warping coefficients, a. To 
demonstrate the approach, we implemented a system that 
uses quadratic polynomials to model global deformation 
due to scaling, shearing, bending, and tapering. 

In a traditional active contours formulation, smoothness 
and bending operators are defined over the control points of 
the model to obtain a stiffness matrix, K. In a deformable 
template formulation, we instead define a stiffness matrix 
over the deformation parameters. The strain energy is thus 
expressed in the template's deformation parameter space: 

E. strain =    a Kä (1) 

where ä = a — ä is a vector describing parameter displace- 
ment from a zero strain "rest" state. 

There is a well understood link between active models 
and statistical estimation [10, 27, 36, 34]. Let us assume 
that the distribution on deformation parameters for a partic- 
ular shape category can be modeled as a multi-dimensional 
normal distribution. The distribution is characterized by its 
mean ä and covariance matrix S. For a given deformation 
parameter vector a, the sufficient statistic for characteriz- 
ing likelihood is the Mahalanobis distance: 

E, deform ;Tv-l; (2) 

where ä = a — ä. Thus inverse covariance is essentially 
a "statistical stiffness matrix." As will be described, ä, £ 
are acquired via supervised learning. 

An eigenvector transform is used to precondition prob- 
lem by diagonalizing (decoupling) the stiffness matrix 
[30, 10]. This reduces the computational complexity of 
evaluating Eqs. 1 and 2 and improves the model's robust- 
ness to noise. During model fitting, deformations are re- 
covered in the decoupled parameter space. 

4.1   Model Fitting 
One important step in the image partitioning procedure 
is to fit each region grouping hypothesis with deformable 
models from the object library. During segmentation, the 
shape model is deformed to match each grouping hypothe- 
sis gi in such a way as to minimize a cost function: 

E(gi) = Ecoior + aEarea + ßEdefo (3) 

where a and ß are scalars that control the importance of the 
three terms. The color compatibility term Ecoior is simply 
the norm of color covariance matrix for pixels within the 

current region grouping. The region/model area overlap 
term is computed via Earea = 

5<%f™, where SG is the area 
of the region grouping hypothesis, Sm is the area of the de- 
formed model, and Sc is the common area between the re- 
gions and deformed model. By using the degree of overlap 
in our cost measure, we can avoid the problem of finding 
direct correspondence between landmark points, which is 
not easy in the presence of large deformations. 

Various approaches to minimizing such a cost func- 
tion have been suggested in the literature: graduated non- 
convexity [4], multi-grid approaches [36], and nonlinear 
programming methods [1]. In our system, we employ the 
downhill-simplex method because it requires only function 
evaluations, not derivatives. Though it is not very efficient 
in terms of the number of function evaluations that it re- 
quires, it is still suitable for our application since it is fully- 
automatic, and reliable. Due to space limitations, readers 
are referred to [25] for implementation details. The proce- 
dure is accelerated via a multiscale approach. 

4.2   Model Training 

In our current system, the template is defined by the oper- 
ator as a polygonal model. During model training, a col- 
lection of training images are first over-segmented as de- 
scribed in the previous section. For each over-segmented 
image, a human operator is asked to mark candidate re- 
gions that belong to the same object. The system then uses 
downhill-simplex method to minimize the cost function in 
Eq. 3, thereby matching the template to the training regions 
in a particular image. This process is repeated for all im- 
ages in the training set. As more training data is processed, 
the system can then semi-automate training. The system 
can take a "first guess" at the correct region grouping and 
present it to the operator for approval [25]. 

5   Automatic Image Segmentation 
Once trained, the deformable model guides the grouping 
and merging of color regions. The process begins with 
over-segmentation of the input image. An edge map is also 
computed via standard image processing methods. Using 
this over-segmentation, candidate region groupings are de- 
termined based on the color band-rate feature [6]. 

Two major constraints are used in the selection of candi- 
date groupings. The first constraint is a spatial constraint: 
every region in a grouping hypothesis should be adjacent 
to another region in the same group. The second constraint 
is a region boundary compatibility constraint: if the aver- 
age edge strength along the boundary between two region 
exceeds a threshold, then the pair of images are marked 
as incompatible. Finally, the number of candidate group- 
ings can be further reduced by considering only those that 
include at least one region with relatively large area. 

Local constraints are insufficient for obtaining reliable 
segmentation. To gain more reliable segmentation, global 



consistency must be enforced [33]. In the global consis- 
tency strategy, for any possible partitioning of the image, 
we compute a global cost for the whole configuration: 

£ = ^2nE(gi)+^n, (4) 
»=i 

where 7 is a scalar, n is the number of the groupings in 
the current image partitioning, r* is the ratio of ith group 
area to the total area, and E(gi) is the cost function for the 
group gj (Eq. 3). In our experiments, 7 = 0.04. 

The first term in Eq. 4 is the sum of the model compati- 
bilty for every grouping in the image partition. The second 
term corresponds to the code length (number of models 
employed), and thereby enforces a minimum description 
length criterion, along the lines of [24]. 

5.1 Approximating the Optimal Solution 

Eq. 4 does not exhibit the optimal substructure property 
required for solution via dynamic programming methods 
[25]. Furthermore, after the initial segmentation, the num- 
ber of candidate regions is not small in general. We there- 
fore implemented a number of approximation algorithms. 
Such algorithms tend to find a near-optimal partition within 
a reasonable number of steps. 

One such algorithm, best-first, is greedy. It examines 
only the local cost of merging (Eq. 3) at each step. First, a 
list of all possible grouping hypotheses is generated as de- 
scribed above. Once all grouping hypotheses have been fit- 
ted with shape models, we then compare the merging cost 
of different grouping hypotheses, selecting the hypothesis 
with minimum model cost. If the cost is less than a thresh- 
old, then the regions are merged. Any hypotheses that in- 
clude these merged regions are then eliminated from fur- 
ther consideration. If any unmerged grouping hypotheses 
remain, then we select the one with the minimum cost and 
repeat the procedure. If the cost exceeds the threshold or 
the hypothesis list is empty, then the procedure stops. 

If the number of candidate regions in the over- 
segmented image is very large, the best-first strategy tends 
to be inefficient; it sometimes requires hours to segment 
an image on a standard workstation (SGI R5K Indy). This 
led us to explore approaches that approximately optimize 
global cost (Eq. 4). Due to space limitations, readers are 
directed to [25] for pseudocode and details of a simulated 
annealing solution. In our experiments, the convergence of 
the simulated annealing algorithm, while markedly better 
than best-first, is still slow. There is an inherent tradeoff 
between annealing schedule and correctness of result. 

5.2 Highest Confidence First Algorithm 

A deterministic algorithm, highest confidence first (HCF), 
can be used to improve convergence speed [8, 21]. The 
HCF algorithm as applied to our problem is as follows: 

1. Initialize the region grouping configuration such that ev- 
ery region in the over-segmented image is in its own dis- 
tinct group gj. 

2. Fit models to each region grouping g*. Compute the 
global cost £0 via Eq. 4. Save this configuration as best 
found so far, C0. 

3. Set £m to a very large value. 
4. For each pair of adjacent groups gj,gj in the current 

configuration, compute the global cost, £2 that would 
result if gj, gj were merged. If £2 < £m, then set £m = 
£2 and save this merged configuration Cm. After this 
step, Cm is the configuration with minimum merging 
cost for any pair of groups in the current configuration. 

5. Use the merged configuration Cm as the new configura- 
tion. If £m < £0, then set £0 = £m and save this new 
configuration as best found so far C0 = Cm. 

6. Terminate when all groups are merged into one. and 
output the best configuration C0 and its cost value £0. 
Otherwise, go to 3. 

In our experience, the computational complexity of HCF 
is generally less than that needed to obtain similar qual- 
ity segmentation results via the simulated annealing algo- 
rithm [25]. In each HCF iteration, the number of different 
merging configurations tested is about O(ra), where n is 
the number of regions in the over-segmented image. This 
is because some results from the previous iteration can be 
reused in the next. At each iteration (except the first), the 
algorithm need only compute the pairwise merging cost be- 
tween all groups gj and the newly-merged group from the 
previous iteration. Thus the total complexity is 0(n2). 

6   Examples 
The system has been tested on hundreds of images from 
a number of different classes of cluttered color imagery: 
images of fruit, vegetables, and leaves collected under con- 
trolled lab conditions, and images offish obtained from the 
world wide web. A few examples are now shown. 

The first example shows results for detecting and merg- 
ing regions associated with bananas. The shape template 
(Fig. 1(d)) was trained using 40 example images of ba- 
nanas at varying orientations and scales. The training im- 
ages were excluded from the test image data set. All im- 
ages in the test data set were then segmented using the 
trained model, as described in Sec. 5. The best first strategy 
was employed in finding the best image partition. 

The resulting model-based region groupings are shown 
below each of the original images in Fig. 3. In cases where 
there were multiple yellow objects in the image, the sys- 
tem recovered multiple model-based groupings (shown in 
different colors). Segmentation took between 30 and 180 
sec. per image on an SGI R5K Indy workstation. 

The system correctly grouped regions despite shadows, 
variation in illuminant, and shape deformation. Especially 
notable are cases where multiple yellow shapes abut each 
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Figure 3: Image segmentation example: color images of ba- 
nanas in various positions with varying illumination. The result- 
ing model-based region groupings are shown below each color in- 
put image. If an image contained more than one detected shape, 
the shape that the system recognized as most "banana like" in 
each image is labeled in light gray. Note that the most similar 
shapes are other bent bananas of similar aspect ratio. 

other. Due to the use of model-based region merging, the 
system is able to avoid merging similarly colored, adjacent 
but separate objects. The approach is also adept at avoiding 
merging objects with their similarly-colored shadows. 

As explained in Sec. 4, each region grouping has an as- 
sociated vector of shape deformation parameters a. The 
vector provides a low-dimensional description of each 
shape that can be stored and used for recognition. In cases 
where multiple objects are present, the system stores a list 
of model descriptions for that image. 

Preliminary experiments in using the recovered shape 
parameter vectors for object recognition have been con- 
ducted. An example is shown in Fig. 3. The "target" shape 

. was the banana in the first image (upper left). The subse- 
quent images are shown in similarity ranking, left to right, 
top to bottom. Similarity was determined via Mahalonobis 
distance between recovered a vectors. The most similar 
shape in each image is shown highlighed in lighter gray 
in the labelled image below. The most similar shapes are 
other bent bananas of similar aspect ratio. 

The next example makes use of the global consistency 

Figure 4: Two deformable template models employed in our ex- 
periments: (a) leaf model, (b) fish model. The polygonal model 
was defined by the user, and then trained as described in Sec. 4.2. 

Figure 5: Leaf image segmentation examples. Each row of the 
figure shows one example. Original images are shown in the first 
column, followed by over-segmented images used as input to the 
merging algorithm. The third image in each row shows the best 
model configuration obtained via HCF. The model-based region 
merging result is shown as the final image in each row. 

strategy to obtain segmentation of tropical leaf images. 
This example can be characterized by clutter of many sim- 
ple leaves. The leaf model employed in this example was 
approximately an oval, as is shown in Fig. 4(a). It was de- 
fined and trained as in the previous example. The training 
images were not contained in our test image data set. The 
HCF algorithm was used in finding the "best" global con- 
figuration, as described in Sec. 5.2. 

The method was tested on a collection of over 100 im- 
ages of different tropical leaves. Due to space limitations, 
not all results can be shown here. Four examples are shown 
in Fig. 5. Segmentation took between 30 and 360 sees, per 
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Figure 6: Example segmentation for images offish. The original images are shown in the first column, followed by the over-segmented 
images used as input to the merging algorithm. The third column shows the models selected in the best merging configuration obtained 
via HCF. Finally, last column depicts the model-based merging. 

image using the HCF algorithm. As can be seen, the sys- 
tem produces a satisfactory segmentation in each case, de- 
spite large deformations. Furthermore, the system does not 
merge adjacent, similarly colored regions unless they were 
consistent with the deformable shape model. 

The final example shows segmentation results for five 
examples of fish images obtained from the world wide web. 
These images are particularly challenging, since there is 
greater shape and color variation, large deformation, and 
clutter. The fish model used in segmentation is shown in 
Fig. 4(b), and was trained using about 60 training images. 
The test images were excluded from the training set. 

As shown in Fig. 6, the method recovered a deformable 
model description of each fish in the image. In one case, 
(Fig. 6(a)), the orientation of the model was incorrectly es- 
timated for three fish. In such a case, local features might 
be used to resolve the orientation ambiguity. Despite clut- 
ter, large deformation, shape variation, and partial occlu- 
sions, the other fish were accurately segmented. 
7   Discussion 

In previous approaches to deformable template-based seg- 
mentation, initial model placement is either given by the 
operator, or obtained via exhaustively testing the model in 

all orientations, scales, and deformations centered at ev- 
ery pixel (or at random seed pixels). The region-based 
approach proposed in this paper significantly reduces the 
need to test all model positions. 

Issues of computational complexity were addressed 
through the use of various constraints as was described in 
Sec. 5, and the use of multi-scale fitting. However, the 
complexity is still daunting in cluttered imagery and needs 
to be improved. The major issue is computation time re- 
quired to obtain a segmentation result. This led to the eval- 
uation of different methods for obtaining "optimal" region 
groupings. At present, the method is well-suited to applica- 
tions where shape segmentation can be precomputed (e.g., 
image databases indexing). 

If there are shadows or partially overlapping objects in 
the image, then the best-first strategy can sometimes get 
a better result since it can select the most confident group 
to merge first, and avoid fitting spurious objects. Unfortu- 
nately, the computational complexity of best-first strategy 
prohibits application in general imagery. 

Compared with the best first strategy, the simulated an- 
nealing approach offers a significant reduction in compu- 
tational complexity. However, the degree of reduction in 



complexity depends on the annealing schedule, and there 
is a trade-off between the robustness and the speed. There- 
fore, the global consistency strategy (via HCF) offers a 
reasonable compromise between speed and accuracy. It is 
therefore the preferred method. 

The method is able to obtain a satisfactory segmentation 
despite clutter, variation in illuminant, shape deformation, 
etc. Based on the statistical shape model, the algorithm 
can detect the whole object correctly, while at the same 
time, avoid merging objects with background and shadow, 
or merging adjacent multiple objects. Region merging and 
object identification are executed simultaneously. Recov- 
ered shape parameters can be used directly in recognition. 
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